Beyond the intention-to treat effect: Per-protocol effects in randomized trials

Miguel Hernán

DEPARTMENTS OF EPIDEMIOLOGY AND
BIOSTATISTICS

Intention-to-treat analysis (estimator) estimates intention-to-treat effect (estimand)

- □ Intention-to-treat effect
 - The effect of being assigned to a treatment strategy, regardless of treatment received, in a particular setting
- □ Intention-to-treat effects are agnostic about postrandomization decisions
 - Changes in studied treatment: discontinuation, switching...
 - Use of concomitant therapies prohibited by the study protocol
 - etc.

Demystifying intention-to-treat effects: Not necessarily preserve the null

- □ Consider a non-blinded trial
- ☐ The ITT effect may not be null even if treatment has a null effect on the outcome
 - Patients and doctors may just alter their behavior in ways that affect their outcome

☐ Most pragmatic trials are not blinded

Demystifying intention-to-treat effects: Not necessarily biased towards the null

- ☐ When the treatment effect is not monotonic
 - not in the same direction for all individuals
- ☐ Trial of active treatment vs placebo
 - 30% of the individuals assigned to treatment did not adhere to treatment
 - direction of the effect in adherers opposite to that in non-adherers
- An ITT analysis may misleadingly indicate a beneficial effect of the less efficacious treatment

Demystifying intention-to-treat effects: Not necessarily biased towards the null

- ☐ Even if the treatment effect is monotonic
- □ Trial of 2 active treatments with differential adherence
 - due to a mild, easily palliated side effect
- ☐ An ITT analysis may misleadingly indicate a beneficial effect of the less efficacious treatment
- ☐ Many pragmatic trials are head-to-head trials

Demystifying intention-to-treat effects: Bias towards the null is often undesirable

- Safety trials
- Non-inferiority trials
- □ In these trials, a "conservative" ITT analysis is statistical malpractice
 - A trial designed to quantify harm and whose protocol foresees only an ITT analysis could be referred to as a 'randomized cynical trial'
- ☐ Many pragmatic trials are for safety, non-inferiority

Demystifying intention-to-treat effects: Not necessarily a measure of effectiveness

- Degree of adherence outside the trial may change drastically after doctors and patients learn of the trial's findings
- □ Actual effectiveness in the community may differ from ITT effect estimate from trial

Demystifying intention-to-treat effects: Not of primary interest for doctors and patients

- ☐ For example, a couple trying to decide whether to use a contraceptive method would want to know
 - the effectiveness of the method when used as indicated
 - not the estimated effectiveness in a population in which, say, 40% of couples failed to use the method properly
 - That is, not the ITT effect
- □ Pragmatic trials are designed to guide clinical decisions by patients and doctors

Need a complement to the ITT effect:

- ☐ An effect measure (an estimand)
 - not affected by the degree of adherence
 - usable in safety, noninferiority trials
 - clinically relevant, patient-centered
- ☐ Per-protocol effect:
 - the effect of implementing the treatment strategies as described in the protocol

A big difference between ITT effect and per-protocol effect

- We have a universally accepted way of estimating ITT effects
 - ITT analysis
 - Almost uncontroversial
- ☐ We don't have a universally accepted way of estimating per-protocol effects
 - There are many types of per-protocol analysis
 - Including the commonly used, unadjusted, naïve perprotocol analysis

Intention-to-treat effect Analysis plan

- ☐ Simple
- □ Compare outcome distribution between group assigned to different strategies
 - Regardless of whether individuals actually followed the strategies
- ☐ Often overlooked problem:
 - ITT analysis cannot be conducted if there are losses to follow-up
 - Potential selection bias due to informative censoring

Intention-to-treat effect Analysis plan

- □ Estimating ITT effect requires adjustment for selection bias due to loss to follow-up
 - Adjustment for baseline and post-baseline covariates
 - Little et al, NEJM 2012
- □ In fact, intention-to-treat effect is more precisely defined as
 - the effect of being assigned to a strategy, regardless of strategy received, while staying under follow-up throughout the study

Per-protocol effect Analysis plan

- □ Not so simple
- ☐ Treatment decisions after baseline are not randomized
 - Potential post-randomization confounding and selection bias
- □ Example
 - In a statins trial, statin use after baseline may depend on post-baseline cholesterol levels; dropout may depend on side effects and prognosis

Per-protocol effect Analysis plan

- ☐ Estimating the per-protocol effect requires adjustment for confounding
 - Adjustment for baseline and post-baseline covariates
- □ In addition to adjustment for selection bias
 - same as for ITT effects

Effects (estimands) vs. analyses (estimators) The elephant in the room

- ☐ Typical ITT and per-protocol **analyses**
 - adjust for neither pre- nor post-randomization variables
 - Potentially biased estimates of ITT and per protocol effects
- ☐ This is a problem for all randomized trials
 - because treatment choices and participation decisions after baseline are not randomly assigned
- ☐ But especially for pragmatic trials
 - with lots of room for non-adherence and loss to follow-up

A pragmatic randomized trial is a follow-up study with baseline randomization

- □ Analysis methods to adjust for post-baseline confounding and selection bias are the same methods used for observational follow-up studies
- □ Adjustment for post-randomization (time-varying) variables require special techniques
 - Inverse probability (IP) weighting, g-formula, etc□ Developed by Robins et al since 1986
 - Instrumental variable estimation

Case study

Hormone therapy and breast cancer

Question

■ What is the effect of postmenopausal hormone therapy on risk of breast cancer in postmenopausal women?

Data

- □ A Women's Health Initiative randomized trial
 - ~16,000 postmenopausal U.S. women
 - Toh et al. *Epidemiology* 2010; 21:528-539

Effect of hormone therapy, what effect?

- □ Effect of assignment to hormone therapy under the study's conditions?
 - Intention-to-treat effect
- ☐ Effect of hormone therapy use as instructed by the study's protocol?
 - Per-protocol effect
- □ BOTH
 - They answer different questions

Methodological challenges for per protocol effect

- ☐ Time-varying treatment
 - Women may not adhere to their assigned treatment (hormone therapy or placebo)
- ☐ Time-varying confounders
 - Use of hormone therapy depends on age, BMI, symptoms...
 - may be affected by prior treatment
- ☐ Also better to estimate absolute risks
 - Appropriately adjusted survival curves
 - Not only hazard ratios

Methodological approach to estimate per protocol effect

- □ Estimate IP weights to adjust for time-varying confounding
 - Need data on post-randomization variables
- ☐ Estimate IP weighted hazards model to estimate
 - Hazard ratios
 - Survival (or cumulative incidence)
- □ Compare survival curves for continuous treatment vs. no treatment
 - Standardize curves to baseline variables

Hazard ratio of breast cancer Hormone therapy vs. placebo

- ☐ Intention to treat effect estimate
 - **1**.25 (1.01, 1.54)
- ☐ Per protocol effect estimate
 - 1.68 (1.24 to 2.28)
- ☐ Suppose you are a woman considering initiation of hormone therapy and who plans to take it as instructed by your doctor
 - Which hazard ratio do you want?

Validity of per-protocol effect estimates

- □ Relies on adjustment for post-randomization confounding and selection bias
- ☐ via the same analytic methods
 - and under the same untestable assumptions
- ☐ that we usually reserve for observational studies

Review: Classification of treatment strategies according to their time course

- □ **Point** interventions
 - Intervention occurs at a single time
 - Examples: one-dose vaccination, short-lived traumatic event, surgery...
- □ Sustained strategies
 - Interventions occur at several times
 - Examples: medical treatments, lifestyle, environmental exposures...

Choice of statistical adjustment method depends on type of strategies

- ☐ Comparison of strategies involving point interventions only
 - All methods work
 - if all confounders are measured or the instrumental variable conditions hold
- □ Comparison of sustained strategies
 - Generally only g-methods work
 - Developed by Robins and collaborators since 1986

Per-protocol effect is generally a contrast of sustained (dynamic) treatment strategies

- □ Not a comparison of continuous treatment A vs. continuous treatment B
- □ But a comparison of strategies of the sort
 - "start taking A, continue taking A until toxicity arises, then switch to B"
- □ Implications for
 - definition of per-protocol effect
 - definition of adherence
 - data collection requirements: need post-randomization data on treatment adherence and (time-varying) confounders

Conclusions (I)

- □ There are good reasons for ITT analyses to remain the primary analyses of many randomized trials
- Also good reasons for appropriately adjusted perprotocol analyses as an integral component of randomized trial analysis
 - especially relevant to patients and clinicians
 - can also be used by modelers and healthcare planners to estimate an upper bound of the impact of changes in recommendations

Conclusions (II)

- ☐ The validity of per-protocol effects requires
 - Explicit definition of per-protocol effect and adherence
 - A priori specification of the statistical plan for the perprotocol analysis
 - High-quality data on adherence and prognostic factors
 - Appropriate adjustment methods
- □ These requirements necessitate changes in the way we design and conduct trials

Thank you

(more on Twitter @_MiguelHernan)

- ☐ This work is supported by PCORI ME-1503-28119
- □ Additional readings
 - Hernán MA, Hernández-Díaz S. Beyond the intention to treat in comparative effectiveness research. Clinical Trials 2012; 9(1):48-55.
 - Hernán MA, Hernández-Díaz S, Robins JM. Randomized trials analyzed like observational studies. *Annals of Internal Medicine* 2013; 159(8): 560-562
 - Toh S, Hernán MA. Causal inference from longitudinal studies with baseline randomization. *International Journal of Biostatistics* 2008; 4(1): Article 22